寫在前面:這裡談的options pricing是很傳統的歐式與美式股權選擇權,相關的Binomial tree valuation,以及risk management!!
Hello there:
這裡主要談的是選擇權與其相關的風險管理(Using Greeks for Risk Management)!!!在這個部分主要談的是選擇權的評價!!特別是Equity options,因為當初最原始從偏微分程式出發的Black-Scholes-Merton option pricing theory主要談的就是股權的選擇權評價!!爾後有人將其從Martingale與其他比較富有經濟意涵的數理模型出發,就使得其理論推演更為多元與豐富!!最重要的是因為假定股票價格變動是服從一個指數常態分配(log-normal distribution),其報酬率上升與下跌有依規則可循,在BSM中其上升/下降就是 Equity price * exp( +/- equity return volatility * square root of time),因此傳統上面的二項式分配(Binomial distribution)能夠在結點切割夠多的情況下逼近常態分布的統計特性(在統計上面稱此為中央極限定理(the Central Limit theorem),採用的是分佈收斂(convergent in distribution)的特性....)就變成其實際求算選擇權的利器!!也因為如此使得BSM後面能夠進行更進一步的Greeks analysis,並進一步提供相對應的風險管理!!爾後才從這裡出發開始談利率方面的選擇權,匯率選擇權與交換選擇權等等....我們必須有認知的是the BSM model for European equity options好用之在於它有明確的數學式(closed-form),因此對其進行解析(不外乎對有興趣目標做微分與積分或對數式進行其他敏感度分析)相當程度上面是比較簡單的,其他的選擇權分析就必須進行數值模擬與測試了!!
因此我們可以有一個小結:期貨有價格發現(price discovery)的功能,而選擇權有市場波動度發現(volatility discovery)的功能;而當我們進行風險管理時,一般說來對於報酬率期望值的管理是從期貨部位著手,而對於報酬率的變異數方面則是從選擇權與其相關部位著手!!
I.Equity options
首先,我們先再回頭談無風險套利原則,當兩個投資組合如果在期末的價值相同時,則我們可以採用無風險利率進行折現,得到兩者在期初必當價值相同的關係!!因此在Equity options我們會產生一個類似機率的關係,我們稱之為風險中立機率(risk neutral probability)!!風險中立機率主要假定市場參與者是個風險中立者,因此其面對風險實有下列的關係: [E(R)-Rf]/sigma,Rf為無風險利率而sigma為市場投資組合報酬率的標準差,此一般被稱之為風險價格(the price of risk),為一個定值!!
(1)毆式與美式買權評價
假定一個兩期二項式模型,目前起點價格為30,每一期上升幅度是14%,下降幅度是11%;目前無風險利率為3%.,其選擇權的執行價格為30.
30 -- 34.2 -- 38.99
<2.86> 5.08 8.99
-- 26.7 -- 30.44
0.24 0.44
-- 23.77
0.00
the risk neutral probability = (1.03 - 0.89)/(1.14 - 0.89) = 0.56
node +: [0.56*8.99 + 0.44*0.44]/1.03 = 5.08(歐式)
美式:必須和max(0,34.2 - 30) = 4.2比較取較大者,因為美式選擇權可提前履約!
所以 max(5.08,4.2) = 5.08故採用原計算!!(美式)
node -: [0.56*0.44 + 0.44*0.00]/1.03 = 0.24(歐式)
美式:必須與max(0, 26.7-30) = 0比較取大者,因為美式選擇權可提前履約!
所以 max(0,0.24) = 0.24(美式)
node 0: [0.56*5.08 + 0.44*0.24]/1.03 = 2.86 (歐式)(美式)
這裡不論是歐式還是美式的買權恰巧相等,若在node+或node-上,max(當時市價-履約價,0)比歐式求算的無風險利率折現期望價格來得高,則美式選擇權的買方會提前履約!!
避險部位: Delta hedge ratio = Diff. Options values/Diff. Stock values
node : (5.08 - 0.24)/(34.2 - 26.7) = 0.6453
node+ : (8.99 - 0.44)/(38.99 - 30.44) = 1
node- : (0.44 - 0)/(30.44 - 23.76) = 0.0659
(2)歐式與美式賣權
兩期二項式模型,目前市價65,每期上漲30%與下跌22%,無風險利率為8%,選擇權的執行價格為70.
65 -- 84.5 -- 109.85
<6.38> 1.6 0.00
[8.42]
-- 50.7 -- 65.91
14.11 4.09
[19.30]
-- 39.55
30.45
the risk-neutral probability = (1.08-0.78)/(1.3-0.78) = 0.5769
node+ : [0.5769*0.00 + 0.4231*4.09]/1.08 = 1.60(歐式)
美式: max(0.70-84.5)=0 < 1.6,美式=歐式=1.6
node- : [0.5769*4.09 + 0.4231*30.45]/1,08 = 14.11(歐式)
美式: max(0,70-50.7) = 19.3 > 14.11,提前執行,美式=19.3>歐式
node : [0.5769*1.6 + 0.4231*14.11]/1.08 = 6.38(歐式)
美式: [0.5769*1.6 + 0.4231*19.3]/1.08 = 8.42(美式)
Delta hedge ratio 自行求算摟!!
在介紹下一個選擇權之前,先談一些關於利率變動的避險!!
II. Interest Rate Options
Forward Rate Agreement(FRA)是一種最早有約定好名目金額的利率避險工具,因為它付固定利率但收浮動利率,但相對上當新利率決定之後,必須等到期限到期才給付,相對上面還是比較不即時!!因此有其它的選擇權的出現!!Interest rate put是一個收固定利率但支付浮動利率的選擇權;Interest rate call則是一個收浮動利率但支付固定利率的選擇權,這兩種選擇全都是採用現金交割,而執行價格一般稱為執行利率(exercise rate);Interest rate call是借款(borrowers)金融機構或企業用來替floating-rate loans所產生利息做避險的工具以規避利率上升的風險,而Interest rate put則是借出(lenders)金融機構或企業用來替支付floating-rate bond所產生出利息做避險的工具以規避利率下跌的風險.....
a.the payoff of an interest rate call
= (Notional principal)
*Max(0,Underlying rate at expiration - Exercise rate)
*(Days in underlying rate/360)
b.the payoff of an interest rate put
= (Notional principal)
*Max(0,Underlying rate at expiration - Exercise rate)
*(Days in underlying rate/360)
一連串interest rate calls的組合稱之為interest rate cap或cap,每一個組合內的call option被稱為 a caplet;而一連串interest rate puts的組合稱之為interest rate floor或floor,每一個組合內的put option被稱為a floorlet!!(an interest rate cap/floor is a series of call/put options on interest rate, with each option expiring at the date on which the floating loan rate will be reset, and with each option having the same exercise date!!)一連串由caps與floors的組合所成的商品被稱為an interest rate collar!!
下面求算interest options所使用的一個例子之interest rate tree:
10.51% -- 13.04% -- 15.78% -- 18.70%
(0.9048) (0.8846) (0.8637) (0.8424)
(0.8106) (0.7777) (0.7417)
(0.7254) (0.6810)
-- 10.25% -- 11.80% -- 14.27%
(0.9070) (0.8945) (0.8751)
(0.8258) (0.7979)
(0.7511)
-- 7.95% -- 10.01%
(0.9263) (0.9090)
(0.8583)
-- 5.91%
(0.9442)
簡易計算提示:
18.70%: 1/1.1870 = 0.8424
14.27%: 1/1.1427 = 0.8751
10.01%: 1/1.1001 = 0.9090
5.91%: 1/1.0591 = 0.9442
15.78%: 1/1.1578 = 0.8637
[0.8424*0.5 + 0.8751*0.5]/1.1578 = 0.7417
11.80%: 1/1.1180 = 0.8945
[0.8751*0.5 + 0.9090*0.5]/1.1180 = 0.7979
7.95%: 1/1.0795 = 0.9264
[0.9090*0.5 + 0.9442*0.5]/1.0795 = 0.8584.......
(1) Eurpoean Options on Zero-Coupon Bond
Zero-Coupon Bond是最簡單的,直接與每期利率有一定的關係!!在債券的二項式計算中,假定其無風險路徑機率各為0.5!!!
Call Option on Zero-Coupon Bond:
考慮一個兩期的call options on zero-coupon bond,我們知道其執行利率為0.8!!
10.51% -- 13.04% -- 15.78% -- 18.70%
0.6479 0.6810 0.7417 0.8424
<0.0119> (0) (0)
-- 10.25% -- 11.80% -- 14.27%
0.7511 0.7979 0.8751
(0.0264) (0)
-- 7.95% -- 10.01%
0.8583 0.9090
(0.0583)
-- 5.91%
0.9442
node ++: Max(0,0.7417- 0.8) = 0
node +-: Max(0,0.7979 - 0.8) = 0
node --: Max(0,0,8583 - 0.8) = 0.0583
node +: [0.5*0+0.5*0]/1.1304 = 0
node -: [0.5*0 + 0.5*0.0583]/1.1025 = 0.0264
node : [0.5*0 + 0.5*0.0264]/1.1051 = 0.0119
(2) An option on a coupon bond
Coupon rate here is 0.11 per year per dollar and the exercise rate is 0.95 as an example.....
the price of node for the bond with respect to ZCBs:
0.11*0.9048+0.11*0.8106+0.11*0.7254+1.1*0.6479 = 0.9877
the price of node + for the bond with respect to ZCBs:
0.11*0.8846 + 0.11*0.7777 + 1.11*0.6810 = 0.9388
the price of node - for the bond with respect to ZCBs:
0.11*0.9070 + 0.11*0.8258 + 1.11*0.7511 = 1.0243......
The tree is given:
0.9877 -- 0.9388 -- 0.9183 -- 0.9351
<0.0352> (0.015) (0)
-- 1.0243 -- 0.9840 -- 0.9713
(0.0629) (0.034)
-- 1.0546 -- 1.0090
(0.1046)
-- 1.0480
node ++:max(0,0.9183-0.95) = 0
node +-:max(0,0.9840-0.95) = 0.034
node --:max(0,1.0546-0.95) = 0.1046
node +:[0*0.5 + 0.034*0.5]/1.1304 = 0.0150
node -:[0.034*0.5 + 0.1046*0.5]/1.1025 = 0.0629
node: [0.5*0.015 + 0.5*0.0629]/1.1051 = 0.0352
(3) An option on interest rates
在這裡我們將原來的interest rate tree案例切出前面兩個periods來做考量!!因為是two-period cap,因此必須考量one-period caplet與two-period caplet再做加總!!今exercise rate為10.5%!值得一提的是當我們在計算Option on interest rate時,不論是call還是put,這個計算都與當初計算FRA是類似的只是FRA的分母是採用最後到期日的折現值,但此處是採用當下節點的利率作為折現值!!爾後再依照一般的Binomial tree valuation來進行計算!!
a. A two-period caplet pricing
10.51% -- 13.04% -- 15.78%
<0.0138> (0.0253) (0.0456)
-- 10.25% -- 11.80%
(0.0053) (0.0116)
-- 7.95%
(0)
node ++:Max(0,0.1578-0.105)/1.1578 = 0.0456
node +-:Max(0,0.1180-0.105)/1.1180 = 0.0116
node --:Max(0,0.0795-0.105)/1.0795 = 0
node +: [0.5*0.0456 + 0.5*0.0116]/1.1304 = 0.0253
node -: [0.5*0.0116 + 0.5*0]/1.1025 = 0.0053
node: [0.5* 0.0253 + 0.5*0.0053]/1.1051 = 0.0138
b. a one-period caplet pricing
10.51% -- 13.04%
<0.0102> (0.0225)
-- 10.25%
(0.0000)
node +:Max(0,0.1304-0.105)/1.1304 = 0.0225
node -:Max(0,0.1025-0.105)/1.0795 = 0
node:[0.5*0.0225 + 0.5*0.00]/1.1051 = 0.0102
c. 將兩者做加總
(因為一連串interest rate calls的組合稱之為interest rate cap或cap,每一個組合內的call option被稱為 a caplet)
the interest rate cap cost: 0.0102 + 0.0138 = 0.0240
留言列表